How to Optimize Recycling Rates Using Waste Incineration
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The improvement of recycling and reuse of waste is becoming more and more important and it is generally preferred compared to waste incineration. In fact, the incineration of waste is often considered the last alternative when recycling of a certain waste fraction is technically not possible or there is simply no market for the corresponding fraction of the waste. But instead of considering waste incineration as being contradictory to recycling, it may also be considered as an alternative way to achieve higher recycling rates. The main goal of waste to energy is the use of the chemical energy contained in the carbon and drogen, and transfer this into thermal energy. But all other elements contained in the waste will of course also be found in the various residue streams leaving the plant. For these residue streams there are possibilities for further treatment, enabling Separation of certain elements, improvement of the quality of a residue stream to allow re-use on the market or even potential for the preparation of a new product.

Enhancing of the Energy Efficiency of an Existing Waste Incineration Plant by Retrofitting with a District Heating Network
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The German Cycle Economy Act (Kreislaufwirtschaftsgesetz KrWG) and discussions on the turn of local energy policies led to intensive examination of options for optimising utilisation of heat produced by the waste incineration plant (MKW) in Weißenhorn. This has been carried out by the waste management firm(Abfallwirtschaftsbetrieb – AWB) of the district of Neu-Ulm over a long period of time. This was also prompted by knowledge that utilisation of already generated energy in the form of combined heat and power generation (CHP) is one of the most efficient ways of achieving climate protection targets. This results from considering which courses of action are available for climate protection.

The Biobattery – Integrated Heat and Power Generation from Biomass Residues and Waste –
© TK Verlag - Fachverlag für Kreislaufwirtschaft (11/2014)
In the light of rising energy costs and ongoing discussions concerning climate and resource protection, the use of bio-waste can no longer solely be focused on the production of compost. Modern emerging technologies show the capability to make use of these resources as feedstock, both for material and energy production. Recent years have already seen the integration of anaerobic digestion units at multiple existing compost plants to exploit this potential. A further benefit of the on-site production of energy is that it largely increases the self-sustainability of the whole facility in terms of heat and power, thereby lowering costs.

bifa-Text No. 62: Ecoefficiency analysis of photovoltaic modules / english version
© bifa Umweltinstitut GmbH (2/2014)
The study by the bifa environmental institute describes a future-orientated view of the ecological and economic effects of photovoltaic (PV) systems along their whole life cycle.

Energy Storage Systems integration into PV Power Plants
© Editorial OMNIMEDIA S.L. (5/2012)
New challenges are growing currently in the field of operation of electrical power system, which includes the increasing level of distributed generation from new energy sources, especially renewable sources. Energy storage will soon become a key element of smart grids, especially as more power generation from inherently intermittent sources such as solar and wind come online.

Study on the Suitability of the Different Waste-Derived Fuels for End-of-Waste Status in Accordance with Article 6 of the Waste Framework Directive - Second Interim Report
© Eigenbeiträge der Autoren (8/2011)
The objective of this study is to provide detailed information and analyses to the European Commission on all the relevant aspects needed for proposing the end-of-waste status of fuels derived from waste. It analyses the suitability of different waste-derived fuels (WDFs) for obtaining the end-of-waste status in accordance with the requirements set out in Article 6 (1) of the Waste Framework Directive.

Username:

Password:

 Keep me signed in

Forgot your password?