European Harmonization of Methods to Quantify Methane Emissions from Biogas Plants
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2016)
In the past years, attempts were undertaken to quantify single emission sources as well as overall emissions from biogas plants using on-site (direct) and remote sensing (indirect) methods. While measurements on site often focus on one type of CH4 sources, remote sensing methods cover the overall emission plume. Among the current available emission measurement techniques, none is in a position to be recognized as the best international reference. Therefore, the establishment of a scientifically based standardization and harmonization of methods would greatly contribute to the assessment of the fugitive emissions from biogas plants.

Mixing in biogas digesters: correlations between laboratory experiments on artificial substrate and simulations with computational fluid dynamics
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2016)
Energy demand for mixing of biomass digesters is a crucial parameter in design and operation of biogas plants. Optimization of flow characteristics in the fermentation process is usually focused on the stirrers where their placement, shape and number, as well as their rotational speed and switching sequence are all important decision variables for overall energy efficiency planning.

Fast methanification of swine manure as an example for substrates with low organic content
© Agrar- und Umweltwissenschaftliche Fakultät Rostock (6/2015)
A biogas reactor of 45 m³ was fed with pure swine manure. A straw layer worked as an anaerobic filter on top of the fluid. The manure was continuously circulated to irrigate the straw. Hydraulic retention time (HRT) of straw was 45 days. HRT of manure was reduced from 45 to 7.5 days within one year. Average concentration of volatile solids (VS) of manure only was 1.8 %. We varied VS concentration and temperature to simulate normal disturbances of operation. Gas production normalized within one day after each short heating interruption. Variations of VS concentration had no negative influence on the Operation as a whole. After two months, a zone with granular sludge in autonomous fluidization was observed just below the straw layer. This shows that the reactor is a hybrid biogas reactor containing a fixed bed on the top, and an UASB zone below.

Experiences with Power-to-Gas – upgrading technology for sewage treatment plants?
© Wasteconsult international (5/2015)
Methane produced in a biological process using surplus electricity from renewable sources such as wind and the sun is being fed into the natural gas grid for the first time in Allendorf (Eder), Germany. The first system of this type in the world went into Operation in early March. The MicrobEnergy (Viessmann Group) demonstration plant had been in operation at the Schwandorf sewage works until the end of December 2014.

System for mixing the contents of a biogas digester by means of cyclically drawing off the product gas
© Wasteconsult international (5/2015)
Conventional digesters fed on high solids material like manure, energy crops and/or other fibrous matter suffer from various disadvantages, among which : - the need to use powerful agitating and mixing systems in the digester in order to avoid the formation of a floating crust on top of the contents - the need to dilute the contents of the digester in order to be able to mix it, with as a result an increase of the size of the digester - the high thermal needs of the digester due to ist size - the high electricity consumption of the mixing system - the high investment costs of the system (size and auxiliary equipment).

Biogas Utilisation in Berlin
© TK Verlag - Fachverlag für Kreislaufwirtschaft (11/2014)
Sustainable resource management and active climate protection as well as the longterm rise in energy prices determine the decision-making processes of municipal waste service providers. Optimised energy utilisation from waste is is a major priority in the strategy of BSR (Berlin City Cleaning Services). As a result BSR started up an organic waste fermentation plant in 2013. The biogas is processed and transformed into biomethane, which is fed into Berlin‘s gas distribution network and then used as fuel for BSR‘s waste collection vehicles that run on natural gas, thereby replacing about 2.5 million litres of diesel.

Greenhouse gases from composting and anaerobic digestion of biowaste in Germany
© European Compost Network ECN e.V. (6/2014)
Greenhouse gas (GHG) emissions from 12 to 120 kg CO2äq/Mg from composting and anaerobic digestion of biowaste are important for environmental impacts and results in Life Cycle Assessment (LCA). Poor operation can cause even higher emissions up to 400 kg CO2äq/Mg. The amount of CH4 and primary N2O differ in a range of factor 10 between different plants and is a result of variation in substrate (feedstock) and basic process parameters like: porosity, density, temperature, moisture, C:N ratio, O2 and pH-value.

Conceptual design and implementation of an integrated system for organic solid waste treatment and by-products recovery – pMethan
© European Compost Network ECN e.V. (6/2014)
This paper addresses the conceptual design and implementation of a decentralized system for the proper management of organic solid waste from small generators, reducing the dependence on fossil fuels and the emission of GHG. The system, named pMethar, consists of a double-stage anaerobic system (a 20- m3 CSTR followed by a 0.9-m3 UASB reactor), a heat and power cogeneration unit (engine adapted to run on biogas), a solid-liquid separation device (adapted draining bags) and a thermal dryer that takes up the heat from the exhaustion gases of the cogeneration engine. Altogether, these units allow the generation of three valuable byproducts - biogas, bio-solids and reuse water – and zero waste, since all these products are used in benefit of the proper system.

Pilot-Scale anaerobic co-digestion of sewage sludge and olive mill wastewater for increased biogas production
© European Compost Network ECN e.V. (6/2014)
Olive mill wastewater (OMW) is a highly polluting wastewater, caused by a high organic load and phenol content. These characteristics suggest that it may be suitable for increased biogas production in anaerobic treatment. In an attempt to improve biogas production co-digestion of sewage sludge and OMW was studied.

Methane potential from paper industry wastes and investigation of the methanogens involved
© European Compost Network ECN e.V. (6/2014)
The anaerobic digestion of organic wastes is a sustainable waste management strategy that is gaining significance due to the increasing costs of fossil fuels and the urgent need to mitigate anthropogenic global warming. Wastes generated by the paper industry are potential substrates for anaerobic digestion and bioenergy production. In this study we used an automatic methane potential test system (AMPTS) to investigate the biogas production potential from lignocellulosic and cellulosic paper industry wastes. The materials were subjected to both mesophilic and thermophilic treatment for 23 days, and various chemical (1% NaOH), mechanical (autoclave and ultrasonic) and enzymatic (ligninase, xylanase, cellulase mixture) pre-treatments of wastes were investigated. The methanogenic communities were investigated using DGGE and the ANAEROCHIP microarray.

 1  2  3 . . . . >


 Keep me signed in

Forgot your password?