Resource Recovery from Waste Using the Input Flexibility of Waste Gasification Technology
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Nowadays, gasification of waste or biomass is becoming the great interest all over the world. Especially, gasification of municipal solid waste (MSW) has been well-researched in Japan. The development of MSW gasification technology was started in the 1970s in Japan because of oil crisis. Several technologies have been researched and developed. The Direct Melting System (DMS), which is the gasification and melting technology developed by Nippon Steel & Sumikin Engineering Co., Ltd., is one of the developed waste gasification technologies in this era. This technology was introduced for commercial use in Kamaishi City, Japan in 1979. As well as this waste technology, other gasification technologies have been developed for commercial use and installed.

Manufacturing of Solid Recovered Fuels (SRF) for Energy Recovery Processes
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
This contribution describes manufacturing processes and quality of three types of Solid Recovered Fuels – i.e. SRF low quality, SRF medium quality and SRF premium quality – that are used in energy recovery plants. In total, two case studies are reported. First case study is about the external processing and confectioning of non-hazardous household, industrial and commercial mixed wastes as well as the internal treatment and homogenisation of various waste fractions at the incineration plant for production of SRF low quality that is utilized in a Waste to Energy (WtE) stationary Fluidized Bed Incinerator. In the second case study, production of SRF medium quality and SRF premium quality that are used for substitution of primary fuels like coal and petrol coke in the cement kiln is described. Finally, data on SRF quality of all three investigated waste types will be summarized and discussed.

Measures to Implement an Advanced Waste Management System in the Czech Republic
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The Czech Republic is now preparing the new complete revision of waste law. The transformation of the waste management into the circular economy started through the legislative process in June 2016. Waste management plan of the Czech Republic for 2015 to 2024 clearly specifies waste strategy and priorities for the country. Thus, in the Act on waste the ban on landfilling of recyclable and recoverable waste in 2024, obligatory separate collection of main municipal waste streams including biowaste since 2015 and currently proposed increase of waste landfilling tax with strict recycling targets already in 2018 are only the first milestones leading to smarter waste future in the Czech Republic.

Brave New World – Selected Jurisdictional Pitfalls when Acting on International Waste-to-Energy Projects
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Over the last few years, Waste-to-Energy (WtE) projects became increasingly international. In times of low interest rates, solid infrastructure projects with their fix return rates are more and more attractive to project developers, international investors as well as EPC and O&M contractors. They attract financial and strategic investors which would otherwise not turn towards these rather long-term investments. Therefore, a continuously increasing number of international players from different jurisdictions is entering the global playing field.

Overview of the Pyrolysis and Gasification Processes for Thermal Disposal of Waste
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Thermal treatment of waste started in the 1870s in England with the first waste incineration plants and this technology was in short time adopted by many industrialised countries. Starting in the late 1970s waste incineration was blamed for emission of toxic compounds, in particular of dioxins, and public pressure initiated the decree of more and more stringent air emission standards in all countries which, again, induced significant improvement of the environmental performance of waste incineration.

Initial Operating Experience with the New Polish Waste-to-Energy Plants
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Waste-to-Energy plants are an integral part of modern municipal Waste Management Systems. Today recycling and energy recovery from waste are the only methods of dealing with municipal waste. This is demonstrated by Waste Management Systems in countries such as Germany, Sweden, the Netherlands, Belgium, Denmark and Austria, where the municipal waste management is limited solely to recycling and energy recovery from waste. The currently discussed concept of the latest circular economy package can hardly change anything in this matter. Poland, as one of the leaders among the new EU member states (since 2004), has still a lot to do within the scope of recycling and waste-to-energy.

Feasability Study of Capturing CO2 from the Klemetsrud CHP Waste-to-Energy Plant in Oslo
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The municipality of Oslo by Energigjennvinningsetaten (EGE) was in December 2015 awarded funding from Gassnova – a state owned company that coordinates the Norwegian CCS-work – to conduct a feasibility study. The purpose of the feasibility study was to demonstrate at least one workable solution for carbon capture from energy recovery for waste, with technical descriptions, cost estimates, project plan and plan and budget for the next phase.

How to Optimize Recycling Rates Using Waste Incineration
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The improvement of recycling and reuse of waste is becoming more and more important and it is generally preferred compared to waste incineration. In fact, the incineration of waste is often considered the last alternative when recycling of a certain waste fraction is technically not possible or there is simply no market for the corresponding fraction of the waste. But instead of considering waste incineration as being contradictory to recycling, it may also be considered as an alternative way to achieve higher recycling rates. The main goal of waste to energy is the use of the chemical energy contained in the carbon and drogen, and transfer this into thermal energy. But all other elements contained in the waste will of course also be found in the various residue streams leaving the plant. For these residue streams there are possibilities for further treatment, enabling Separation of certain elements, improvement of the quality of a residue stream to allow re-use on the market or even potential for the preparation of a new product.

Complex Approach towards the Assessment of Waste-to-Energy Plants’ Future Potential
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
There is a fierce debate ongoing about future recycling targets for municipal solid waste (MSW) at the European level. The old linear concept of waste management is being changed into a circular economy. Since the separation yield and post-recycling MSW (later on residual solid waste, RSW) production have an opposite relationship, assuming the constant production of particular components (paper, plastics etc.), lower RSW rates are also expected. This is having a negative effect on Waste-to-energy (WtE); especially in terms of its future optimum capacity in particular countries.

Innovative Application Methods of Slags from High-Temperature-Gasifying-and-Direct-Melting System
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
JFE High-Temperature Gasifying and Direct Melting Furnace System (hereinafter Gasifying and Melting System) was developed to treat any kind of wastes and to contribute to energy and material recovery. Gasifying and Melting System was developed by integrating company’s original technologies for the iron-making blast furnace and fluidized bed for incineration plants, which the company cultivated over many years. The company’s advanced technologies in these two different fields were combined and integrated into the unique Gasifying and Melting System. This system is a proven technology that realizes high performance

 1  2  3 . . . . >


 Keep me signed in

Forgot your password?